

Vocabulary and Sentence Stems

Vocabulary and Sentence Stem Bank

These words have been organised underneath headings linked to the different strands of the maths curriculum and written in order so common associations are grouped together.

Term	Definition	Stem Sentences
Number and Place Value		
Digit	A single numeral e.g 4 or 7	The value of the \qquad digit in \qquad is 'The value of the 6 digit in 173,463 is 60.'
Integer	A whole number e.g 56, 107, 5000	
Negative number	A number less than 0.	
Ones	Digits representing 0-9	The \qquad in \qquad represents the ones. 'The 5 in 475 represents the ones.'
Whole	The total amount.	\qquad is the whole, \qquad and \qquad are the parts. ' 20 is the whole, 16 and 4 are the parts.'
Part	An portion of a number that makes part of the whole.	```A part of_is 'A part of 10 is 6. '``` \qquad ```can be split into the parts``` \qquad ```and``` \qquad ```' 10 can be split into the parts 6 and 4'```
Partitioning	Splitting a number into parts.	\qquad can be partitioned into \qquad and ' 35 can be partitioned into 30 and 5'
Equal	When two numbers and/or calculations havethe samevalue or worth.	\qquad is the same as \qquad $\overline{\prime 20+20}$ is the same as 10×4 ' \qquad is equal to \qquad $\bar{\prime} 56$ is equal to $7 \overline{x 8}$ '
Less than	When the value or worth of a number/calculation is smallerthan another. < is the symbol used to represent less than.	\qquad is lessthan \qquad '4 is less than 5' \qquad $\bar{\prime}<5 \overline{\times 3}$
Greater than	When the value or worth of a number/calculation is largerthan another. > Is the symbol used to represent greater than.	\qquad is greater than \qquad $\bar{‘} 3 / 5$ is greater than $\overline{1 / 5 ’}$ \qquad is more than \qquad $\overline{{ }^{17}}+33$ is more $\overline{\text { than } 15+34,}$ ${ }^{\prime} 40 \div 5>5+2,$

Odd	Numbers that can't be made of groups of two. Odd numbers can be partitioned into one odd part and one even part.	\qquad is not made of pairs; it is an odd number. ' 37 is not made of pairs; it is an odd number.
Even	Numbers that can be made out of groups of two. Even numberscan be partitioned into two odd parts or two even \square parts.	\qquad is made of pairs of \qquad ; it is an even number. ' 12 is made of pairs of 6 ; it is an even number.'
Ordinal number	A number that gives a position eg. 1st.	
Cardinal number	A number that represents a quantity.	
Prime number	A number that can only be divided by itself and 1.	I know that \qquad is a prime number because its only factors are \qquad and 1. 'I know that 19 is a prime number because its only factors are 19 and 1.'
Square number	A number created from multiplying an integer by itself.	I know \qquad is a square number because you multiple \qquad by itself. 'I know 64 is a square number because you multiple 8 by itself.'
Cube number	A number created by multiplying an integer by itself threetimes. $\begin{aligned} 81^{3} & =1 \times 1 \times 1=1 \\ 2^{3} & =2 \times 2 \times 2=8 \\ 3^{3} & =3 \times 3 \times 3=27 \\ 4^{3} & =4 \times 4 \times 4=64 \end{aligned}$	If I multiple \qquad by itself three times, I get the cube number \qquad 'If I multiple 10 by itself three times, I get the cube number 1000.'

Calculations		
Number sentence	Representing the maths of a context with numbers and symbols. E. $g 50+20=70$	The number sentence that represents the word problem is \qquad Jake has 10 stickers, he gives 4 to his sister. How many does he have left? 'The number sentence that represents the word problem is 10-4=6'
Operation	Four actions to solve problems; addition, subtraction, multiplication and division.	
Calculation	Using any of the four operations between numbers. E.g $10+5,10 \times 5,10-5,10 \div 5$	
Estimate	Finding an approximate answer by rounding the numbers to the nearest one, tens, hundreds etc.	I estimate \qquad is \qquad becauselcando \qquad 'I estimate 19×8 is 160 because I can do 20×8.'
Rounding	Changing the number up or down to the nearest one, ten, hundredetc depending how close it is.	I know to round \qquad to \qquad because it is between \qquad and \qquad and the is above/below 5. 'I know to round 67 to 70 because it is between 60 and 70 and the ones is above 5.'
Commutative	Adding or multiplying numbers togetherin anyorderbecause you still get the same total.	If I know \qquad then I also know "If I know $12+3=15$ then \mid also know $3+12=15$ '
Distributive	Splitting a multiplication up into two different calculations that still represent the same amount. 9×6 is the same as 4×6 and 5×6 added together.	I know that \qquad groups of \qquad is the same as \qquad groups of \qquad and \qquad groups of \qquad 'I know that 3 groups of 15 is the same as 3 groups of 10 and 3 groups of 5 .'
Addition		
Adding	Combining 2(or more) parts to make a whole.	
Sum	The calculation that represents an addition operation.	The sum of \qquad and \qquad is \qquad 'The sum of 24 and 30 is 54 '
Total	The amount you get from adding 2 or more numbers together.	The total ofthe parts \qquad and \qquad is \qquad 'The total of the parts 30 and 70 is 100.'
Subtraction		
Take away	Removing a part from the whole.	

Difference	The amount of the missing part between part and whole.	The difference between \qquad and \qquad is \qquad 'The difference between 35 and 50 is 15'
Multiplication		
Times	An amount that is added to itself multiple times.	\qquad times \qquad equals \qquad 'three times ten equals thirty'
Groups	The amount of the same number in a multiplication.	There are \qquad groups of \qquad in \qquad 'There are 4 groups of 5 in 20'
Multiples	The result of multiplying one whole number with another. E.G 3,6,9, 12 are multiples of 3 .	I know that \qquad is a multiple of \qquad because it is in the \qquad timestable. 'I know that 20 is a multiple of 5 because it is in the 5 times table.' I know that \qquad is a multiple of \qquad because it is made of \qquad equal groups of \qquad . 'I know that 42 is a multiple of 6 because it is made of 7 equal groups of 6 .
Array	Arranging symbols/objects into columns and rows to represent multiplication.	There are \qquad lots of \qquad 'There are 3 lots of 4.'
Scaling	The ratio between two amounts. B is twice the size of A.	\qquad is a \qquad of the size of \qquad ' 15 cm is a third of the size of 45 cm '
Division		
Divide	Sharing out an amount into equal groups.	
Factors	A factor of a number is a whole number that divides exactly into it.	\qquad is a factor of \qquad because I can share it into \qquad equal groups of \qquad '3 is a factor of 12 because I can share it into 3 equal groups of 4 .
Remainders	When you divide one number by another and the answer does not divide exactly and you have an amount left over.	

Fractions, Percentages, Decimals		
Fraction	A part of something. The whole can be one object or a group of objects.	
Numerator	The top part of the fraction that shows how many parts you are looking at.	
Denominator	The bottom part of the fraction that shows how many equal parts are in the whole. $\underline{3}$ 4 \qquad	
Unit fractions	A fraction that has a numerator of 1. E. ${ }^{1 / 4}$	\qquad is a unit fraction. "1/5 is a unit fraction." A unit fraction always has a numerator of \qquad "A unit fraction always has a numerator of 1 "
Non- unit fractions	A fraction that has a numerator larger than 1. E. ${ }^{3} / 4$	\qquad is a non-unit fraction. $\overline{" 3 / 5}$ is a non-unit fraction." A non-unit fraction always has a numerator \qquad "A non-unit fraction always has a numerator bigger than 1"
Mixed number	A whole number and a fraction. E. $g 23 / 4$	The \qquad represents \qquad "The 2 represents 8 quarters" A mixed number is made upof a \qquad and a \qquad "A mixed number is made up of a whole number and a fraction."
Improper fraction	A fraction that has a numerator larger than the denominator. E. 9 8/4	\qquad is an improper fraction. "7/5 is an improper fraction."
Equivalent fractions	Fractions worth the same amount.	\qquad is equivalent to \qquad " $1 / 2$ is equivalent to $3 / 6$ " I know \qquad and \qquad are thesame because... "I know $1 / 4$ and 4/ 16 are the same because both the numerator and the denominator have been multiplied by 4."

Decimal equivalents	Decimals that have the same worth as a fraction.	\qquad is the same as \qquad ' 0.1 is the same as one tenth.'
Tenths	When the whole has been split into 10 equal parts.	1/10 of \qquad is \qquad " $1 / 10$ of 50 is 5" To find a1/ 10 of \qquad , I must.... "To find a 1 / 10 of 30 , I must divide 30 by 10 so $1 / 10$ of 30 is 3 . If I have \qquad , I have \qquad left over "If I have 2/10, I have 8/10 left over."
Percentage	An amount out of 100.	I know \qquad \% is \qquad out of 100. "I know 15% is 15 out of 100 ."
Ratio		
Relative size	Changing the amount of an item to be in proportion to another amount.	
Proportion	Having two ratios that are equal in size. E.g 1:5 is the same as 2:10	If the ratio is \qquad , then if I had \qquad , I would also have \qquad "If the ratio is 2:5, then if I have 40 boys, I would also have 100 girls."
Ratio	Comparing one part of a whole to another part of a whole. Eg. The ratio in cooking is 1(egg):100(grams offlour)	For every \qquad , I have \qquad "For every 5 blue pegs, I have 10 red pegs."
Algebra		
Formulae	A rule that uses symbols or letters to represent any number you place in there. $E . G a \times b=c$	
Linear number sequence	A sequence that goes up in the same amount each time or follows a rule.	
Measurement		
Length	The measurement for how long something is.	
Mass	Amount of matter in an object.	

Weight	How heavy an item is.	
Volume	The space taken up by an objector the amount of liquid	
Capacity	How much liquid a container could hold.	
Metric	A modern unit of measurement including centimetre, litre, grams	$\begin{aligned} & 10 \mathrm{~mm}= \\ & " 10 \mathrm{~mm}=1 \mathrm{~cm} " \end{aligned}$ I know that there are \qquad cm in \qquad m so I know there are \qquad cm in \qquad m. "I know that are 100 cm in 1 m so I know there are 500 cm in 5 m "
Imperial	An old unit of measurement including mile, inch, foot, pint	1 lb is the same as \qquad oz " 1 lb is the same as 16 oz "
Analogue clock	A clock where the time if representedonaface with hands.	The \qquad hand represents \qquad "The long hand represent the minutes" The \qquad represents \qquad minutes "The 4 represents 20 minutes."
Digital clock	The time represented as digits.	The \qquad in \qquad represents \qquad " "The 3 in 03:15 represents the hour."
Perimeter	The length around a 2D shape.	To find the perimeter of \qquad , I must... "To find the perimeter of a pentagon, I must multiply the length of one side by 5 " A square will always have..." "A square will always have a perimeter with a multiple of 4."
Area	The amount of space a shape covers.	If I know the length and width of is__then I know the area is "If I know the length and width of the rectangle is 6 cm and 4 cm then I know the area is 24 cm ." To find the area of a \qquad , I must... "To find the area of a triangle, I must multiply the base by the height and then half it."
Geometry		
2D shape	An outline with length and width.	
3D shape	An object with length, width and depth.	

Net	A flat shape which can be folded into a 3D shape.	
Polygon	A 2d shape with more than 2 sides.	
Angle	A turn formed between two straight lines meeting.	A \qquad angle is (between) \qquad (and \qquad) degrees. 'A right angle is 90 degrees.' 'An acute angle is between 0 and 90 degrees.'
Horizontal/ver tical lines	A straight line that runs from top to bottom/left to right.	
Co ordinates	A pair of letters or numbers that show a position on agrid.	When finding a co-ordinate I must read the \qquad axis then the \qquad axis. 'When finding a co-ordinate Imust read the X axis then the Y axis.' When writing a co-ordinate, I must write \qquad then \qquad When writing a co-ordinate, I must write x axis then the y axis.'
Translation	Moving a point or object in any direction without rotating it.	
Reflection	A mirror view across a line of reflection.	
Radius	The distance from the centre of a circle to the circumference.	
Diameter	A straight line that passesthrough the centre of the circle from one side to the other.	
Circumference	The distance around a circle.	

Statistics		
Bar charts	A chart which shows the relation between a set of data.	The \qquad bar represents 'The yellow bar represent 6 children'
Pictograms	A diagram where a picture represents a quantity.'	The \qquad represents \qquad so \qquad represents \qquad 'The flower represent 5 flowers sold so 2 flowers represents 10 flowers sold.'
Tables	A way of recording or displaying basic data.	
Pie chart	A circle graph where each section represent part of the total.	
Line charts	A graph depicting continuous data.	A \qquad linerepresents \qquad 'A steep line represents the plant grew quickly.'
Discrete data	Data that is not related to each other. E. G Favourite colours	
Continuous data	Data that is on the same scale and dependent on the previous piece of data. E.G tracking temperature over multiple days.	
Mean	The average amount of a group of different amounts.	To find the mean, I need to \qquad 'To find the mean, I need to add up the amounts and divide by how many amounts there are'

